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The calculated defect structure of bulk 
and {001} surface cation dopants in MgO 

E.A .  COLBOURN,  W. C. M A C K R O D T  
ICI PLC, New Science Group, The Heath, Runcorn, Cheshire, UK 

Lattice defect calculations are presented for the cation doping of the bulk and {001} 
surface of MgO by Li +, Na +, Be z+, Ca 2+, Fe 2+, AI 3+, Sc 3+, Fe 3+, Ti 4. and Si 4+. Interionic 
potentials are derived from electron-gas calculations while the lattice relaxation methods 
are essentially those introduced by Lidiard and Norgett. An emphasis is placed on the 
differences between the bulk and surface, and, where possible, a comparison is made with 
the available experimental data. 

1. Introduction 
In view of its importance both in fundamental 
research in ceramics and in areas of application 
such as heterogeneous catalysis, the defect struc- 
ture of magnesium oxide has been the subject of 
extensive study for a number of years. Central 
to this study is the role played by cation impu- 
rities, a number of which are present in the purest 
materials and are largely responsible, therefore, for 
many of its electrical [1,2], optical [3], mass- 
transport [4, 5], and reactive properties [6,7]. 
While experiment continues to be the major source 
of information about this, as indeed about other 
refractory oxides, recent advances in theoretical 
methods and computational procedures [8-11]  
suggest that calculations might make a significant 
contribution to our knowledge of the defect 
structure, especially in circumstances in which 
either the appropriate experiments are difficult 
to perform accurately, or the results open to 
ambiguous interpretation. 

It now seems probable that intrinsic defects in 
MgO are present only at the highest temperatures 
and even then in extremely low concentrations. 
For the most part lattice disorder is governed by 
the level and nature of the impurities, although 
the precise details of this disorder remain uncertain 
for the majority of cations as Gourdin and Kingery 
have pointed out recently [12]. Trivalent impurites 
such as A13+, Sc a+, Cr a+ and Fe a+ have received 
most attention, at least in the bulk, and are 
thought to give rise to magnesium vacancies; 
while in a few cases impurity-vacancy association 
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energies have been reported [4, 12, 13]. Infor- 
mation about other cations, however, whether 
isovalent such as Be 2§ Ca 2+ and Fe 2+, or aliovalent 
such as Li +, Na § Si 4+ and Ti 4+, remains sparse, 
except for the alkali ion V-centres [ 14-16 ]. 

A further problem associated with impurity 
defects relates to possible differences between 
the crystal bulk and interfaces such as surfaces 
and grain boundaries [!7, 18]. Recent experi- 
ments have indicated that Ca 2+, A1 a§ Sc a+, Fe a§ 
La 3+, Si 4+ and Ti 4+ segregate at grain boundaries 
[19-21],  while Black and Kingery [22] have 
reported that Sc a+, Cr a+ and Fe a+, but not Fe z+ 
segregate at the {001} surface. Ca 2+ [23] and 
Zn 2+ [24] also appear to concentrate at the 
surface as does A13+; but in the case of the latter 
it seems to be accompanied by spinel, formation 
[25, 26]. 

In view of this situation, then, it would seem 
worthwhile giving a unified theoretical description 
of both the bulk and surface defect structure of 
MgO induced by a variety of mono-, di-, tri- and 
quadrivalent cations with three purposes in mind. 
The first is to compare the predicted bulk and 
surface defect energies, for comparisons of this 
sort appear to be rather limited at present [27, 
28]. The second is to assess the accuracy of these 
calculations in relation to such data as exists, 
particularly for surfaces [22-26].  Finally it is 
our purpose to stimulate further experiment in 
those areas where theoretical information is 
available or can be easily obtained but where the 
data are either limited or non-existent. Accord- 
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ingly, in this paper we present calculations of the 
defect structure of MgO doped with Li +, Na § 
Be 2+, Ca 2+, Fe 2*, AI a*, Sca+, Fe s+, Si 4+ and Ti 4+ 
both in the bulk and at the {00 1} surface and 
compare the results with what can be deduced 
reliably from experiment. Calculations for some 
of the bulk defects considered have been reported 
previously [29, 30], although in the majority of 
cases this is not so, while those for the surfaces 
are presented here for the first time. 

Our emphasis on the term "unified theoretical 
description" is intended to stress two important 
aspects of defect calculations of the type reported 
here. The first is that in many instances differences 
between bulk and surface energies are small so that 
it is essential that the treatment of lattice relaxation 
is as near identical as possible in both cases. As on 
previous occasions [27-30] the procedures used 
in the present calculations ensure that this is so. 
The second point is that a comparison of impurity 
effects, if it is to be consistent, requires the use of 
consistent theoretical methods and in particular 
those used to derive interatomic potentials; for 
the latter ultimately determine the nature of the 
defect structures and the magnitude of the energies 
involved. All our calculations, therefore, are 
based on a single procedure for determining 
interatomic potentials, namely the modified 
electron-gas approximation discussed recently 
in some detail [29]. Despite its limitations [31], 
this is the only theoretical procedure available 
that (a) calculates impurity potentials which are 
consistent with the host lattice, that is to say, 
they are calculated at the same level of approxi- 
mation, (b) distinguishes between different host 
lattices with regard to impurity potentials, and 
(c) calculates potentials for different charged 
states in a completely equivalent way. 

The outline of this paper, then, is as follows. 
In Section 2 we summarize the methods used for 
deriving interatomic potentials and the deter- 
mination of lattice relaxation, while in Section 3 
we present our detailed calculations of the defect 
structure associated with cation impurities. 

2. Theory of lattice defect calculations 
For materials suchas MgO that are ionic, or nearly 
so, the theory of lattice defect calculations is 
largely concerned with two principal problems. 
They are the evaluation of interatomic potentials 
and the treatment of lattice relaxation. Both have 
been reviewed recently in some detail [11,32], so 
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that only those features that are relevant to the 
present calculations will be discussed and even 
then only briefly. 

2.1. I n t e r a t o m i c  po ten t i a l s  
Here, as elsewhere [27-30],  interatomic potentials 
are assumed to be exclusively two-body in nature, 
with an explicit allowance for electronic polar- 
ization of the lattice by means of the shell-model 
proposed by Dick and Overhauser [33]. The non- 
polarizable contribution to the total potential, 
E(R) is calculated on the basis of a modified 
electron-gas approximation [29, 34-37].  It 
includes the self-energy correction suggested by 
Rae [38] and is given by 

E(R) - ZAZB Z B ( PA(r l )dr l - -ZA fPA(r2)dr2 

f{I,.(,) . ~ ~ drl dr2 + 

+ EG [0A(0 + ;B(r)] - - ;A(r )  

• E G [pA(r)] --PB(r)EG [pB(r)] } dr (1) 

in which 

Ea [p(r)] = CK [P(r)] 2/3 + Ce [1 -- 8/35 

+ 25 + 1/3541 [;(r)l  "3 

+ ec [p(r)]. (2) 

In Equations 1 and 2 Z A and Z B are the nuclear 
charges of the ions, PA(r) and PB(r)their respec- 
tive electron densities, and ec the correlation 
energy density derived by Gordon and Kim [34]. 
The factors Ck and Ce are given by 

Ck = (3/10) (3fr2) 2/3 and Ce = (3/4) (3/71") 1/3 

while 5 is determined [38] from the equation, 

(4N) -t = 53 (1 --9/86 + 1/453), (3) 

where N is the total number of electrons of the 
two ions. Cation densities are taken as the free-ion 
values whereas the oxygen density is obtained 
from single-centre Hartree-Fock calculations with 
an effective potential that simulates the Madelung 
field of the crystal [29]. 

Full numerical details of all the potentials used 
in the present calculations are given in a recent 
compilation of Colbourn et al. [39], so that here 
we simply illustrate the variations in the non- 
coulombic contributions to impurity-host  lattice 
interactions. These are shown in Figs. 1 to 4. While 
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it is true that for the most part these variations 
reflect in a straightforward way differences in ion 
size, the important  point  is that they are calculated 
in a consistent way for the entire range of impu- 
rities examined here. 

2.2. Lattice relaxation 
The treatment of  lattice relaxation used in the 
present calculations is essentially that developed 
by Lidiard and Norgett [8] and Norgett [9, 10] 
and modified for sufaces by Mackrodt and Stewart 
[28]. The general formulation is based on the 

notion that the total energy of the system is 
minimized by a relaxation of  the ions surrounding 
a defect and that this relaxation decreases fairly 
rapidly for distances away from the defect. As a 
result, the crystal can be formally part i t ioned into 
an inner region 1, in which the lattice configuration 
is evaluated explicit ly,  and an outer region II, 
which as  far as the defect is concerned can be 
viewed as a quasi-continuum, within which the 
displacements can be calculated on the basis of 
some suitable approximation.  

The total energy of  the system is written as 
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E = EI(X ) + Eil(Y ) + EI,n(X,Y), (4) 

in which El(X ) is the energy of the inner region, 
EII(Y), the energy of the outer region and EI,n(X, 
Y), the interaction energy between regions I and 
II. X is a vector of the independent displacements 
of ions in the inner region, while Y is the corres- 
ponding vector for the outer region. The com- 
ponents of X are determined by solving the 
appropriate "force-balance" equations which 
result from the requirement that the force on each 

3"00, 

ion in region i is zero. The components of Y, on 
the other hand, are derived on the basis of the 
Mott-Littleton approximation. A detailed account 
of these procedures is given in [ 11 ]. 

3. Defect calculations 
The theoretical methods outlined briefly above 
were used to calculate lattice defect energies 
associated with Li +, Na +, Be 2+, Ca 2+, Fe 2+, A13+, 
Sc 3+, Fe 3+, Ti 4+, and Si 4+ in MgO, both in the 
bulk and at the {001} surface. In all the calcu- 
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lations reported here, except those for the 
impuri ty-vacancy dimer at the surface, more than 
a hundred ions were relaxed explicitly in the inner 
region. This ensured an energy convergence to less 
than 0.001 eV. For dimeric impurity associates at 
the surface, however, the lower symmetry of  the 
system reduces the size of  the inner region that 
can be dealt with at present. Up to fifty ions could 
be explicitly relaxed and the corresponding defect 
energies fitted to a simple function of  the region 
size. From this, the extrapolated energies for 
infinite region I could be obtained with an esti- 
mated error of  less than 0.05 eV in all cases. As on 
previous occasions [27, 28] defect energies at the 
{001} surface refer to the fully relaxed surface, 
that is to say, surfaces at which both cores and 
shells have reached their equilibrium positions. 
Our complete set of  results is given collectively in 
Tables II to XIII,  while for convenience the funda- 
mental defect energies are summarized in Table I. 
We now consider the individual impurities in detail. 

3 . 1 .  Li + 
In the absence of  oxygen exchange, Li + sub- 
stitution can be compensated by either anion 
vacancies or cation interstitials. At the high- 
temperature limit, or alternatively at infinite 
dilution, that is to say when no association is 
allowed for, the calculated heats of  solution 
per Ling ion are 2.78 and 4.90eV, respectively, 
which suggests that vacancy compensation is 
the more favourable of  the two models by far. 
The {100} dimer, ( L i ~ g - V o )  is bound by 1.42 
eV with respect to the isolated defects, while 

TABLE I Fundamental energies for MgO. Lattice energy 
-- 40.75 eV 

(eV) 

(a) Bulk defects 

Formation energy of: / 
cation vacancy 25.41 (23.83)* 
anion vacancy 22.91 (24.70) 
cation (Mg 2 +) interstitial -- 13.59 (-- 12.41 ) 
anion (02-) interstitial -- 7.74 (-- 12.60) 
Schottky pair 7.57 (7.7) 

(b) {001} surface defects 
Formation energy of: 

cation vacancy 25.91 
anion vacancy 23.33 

*Figures in brackets are the corresponding defect energies 
based on the potential derived by Catlow e t  al. [50] and 
used by Gourdin and Kingery [12]. 

the interaction energy of the corresponding 
trimer, '+ "+ (L1Mg-V o-LiMg),  is - 2.74 eV, or 1.37 
eV per Li~ig. This reduces the calculated heat of  
solution to approximately 1.4 eV. Free interstitial 
Li~ and its associated defects, namely cation 
vacancies and anion interstitials, are found to be 
highly energetic; however, as before this is drasti- 
cally reduced by association. In particular, the 
trimer, (Li~-VMg-Li~) , in which two lithium 
ions and a cation vacancy form a linear complex 
in the {1 1 1} direction, is bound by more than 
8eV with respect to the isolated defects. We 
predict it to be the lowest energy neutral defect 
in MgO, with a heat of  solution of  0.72 eV. How- 
ever, the energy difference between this and the 
anion vacancy trimer, ( L i ~ g - V o - L i ~ g )  is small, 
suggesting that both are likely to exist. The 
calculated enthalpy change for the equilibrium, 

-4- . +  .4- . +  (L1Mg-V O --LiMg ) + MgO ~ (Li I-VMg-L11 ) 

is - -1 .37eV.  Our calculations suggest, therefore, 
that Li20 should have an appreciable solubility 
in MgO, by either mode of  solution. The inter- 
stitial trimer "+ "+ similar to (L1 I - v M g - L i  I)  is that 
proposed by Kim and Nowick [40] for Li + 
impurities in MgF2 and subsequently confirmed 
theoretically by Catlow and James [41]. It is also 
similar to the {11 1} complex (O~--Vo-O~)  in 
alkaline-earth oxides discussed by Mackrodt and 
Stewart [30]. The barrier for rotation through 
the {110} direction is calculated to be 0.46 eV 
which is similar to both the theoretical value of  
0.66eV and the experimental value of  0 .42eV 
for Li + in MgF 2 [40]. We suggest, therefore, 
that dielectric relaxation of  the same type should 
occur for Li + in MgO. 

The reduced symmetry that surfaces inevitably 
impose limits the range of  defects for which cal- 
culations comparable in accuracy to the bulk can 
be performed. For Li + at the {00 1} surface, there- 
fore, we have not been able to include inter- 
stitial defects in the present report and confine our 

.4- attention to the isolated substitution, L1Mg , and 
the neutral vacancy trimer. The differences between 
the bulk and surface follow the trend previously 
found for Li4- in NaF [28], namely that Ling is 
predicted to be marginally more stable in the bulk, 
whereas the neutral trimer is lower in energy by 
approximately 1.2 eV at the {0 0 l}surface. Now in 
general these differences are governed by three 
factors, namely, the Madelung potential, the 
(electronic) polarization of the lattice and its 
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elastic deformation.  In the case of  Li~g, both  
the electrostatic and elastic energy contributions 
favour the surface, whereas the polarization 
energy, due largely to long-range charge-induced 
dipoles, is greater in the bulk. As shown in Table 
II, the overall energy is slightly lower in the bulk. 
The relative stability of  the trimer ( L i ~ g - V  o -  
Li~g), on the other hand, as with all neutral 
defects, is determined solely by the local elastic 
deformation,  including short-range polarization 
effects. Here it is predicted to favour the surface. 
At equilibrium, therefore, the present calculations 
suggest a surface enrichment by Li +, although this 

view might require modification once interstitial 
defects can be taken into account. 

As we have indicated, the present calculations 
specifically refer to conditions under which there 
is no exchange of  oxygen, a situation for which 
there seems to be no experimental data. Defect 

calculations involving the oxidation and reduction 
of MgO will be reported separately [42], when we 
will be able to make direct comparison with 
experiment [14-16] .  

3.2.  Na + 
The doping of MgO by Na + is both interesting in 
itself and in relation to Li +, for the two are dis- 
tinguished largely by the difference in ionic radius 
and hence by the elastic response of  the lattice. 
Thus, the energy for the isolated defect is increased 
from 16.27eV for Li~ag to 18.64eV for Na~g. 
However, the lower lattice energy of  Na~O, 
- - 2 7 . 1 0 e V  compared w i t h - 3 1 . 6 0 e V  for Li20, 
leads to heats of  solution for free vacancy and 
interstitial compensation which are very similar 
for the two monova!ent oxides. The binding 
energies of  both  the {100} dimer and trimer are 
within 0.1 eV of  the corresponding Li + defects, 

TABLE II Doping of MgO by Li § Lattice energy of LifO = -- 31.60 eV* 

(eV) 

(a) Bulk defects 

(i) Li + subs t i t u t i on  
Defect energy of Li~ig 

Calculated heat of solution per  L i  + ion: 

Free anion vacancy compensation 
Free cation interstitial compensation 

Defect energy of {100} (Li~/lg-Vo) complex 
Interaction energy of free Li~lg and V O (anion vacancy) 

Defect energy of {1 00} (Li~cTg-Vo-Li~g) complex 
Interaction energy of Li~/ig and (Li~ig-V O) 
Total interaction energy of two Li~lg and V O 
Calculated heat of solution per Li § ion 

(ii) Li  § interst i t ial  
Defect energy of Li~ 

Calculated heat of solution per Li § ion 
Free cation vacancy compensation 
Free anion interstitial compensation 

Defect energy of {111} (Li~-Vlvlg--Li~) complex 
Total interaction energy of two Li~ and VMg 
Calculated heat of solution per Li § ion 

Defect energy of {1 10} (Li~-Vivlg-Lii ~) complex 
Rotation barrier of (Li~-Vlvlg-Li [) complex 
thrqugh {110} direction 

Defect energy of {-~ 00} (Li~'-O~--Li~) complex 
Total interaction energy of two Li~ and O{- 
Calculated heat of solution per Li § ion 
Activation energy for Li § interstitial migration 

(b) {001} surface defects 

16..27 

2.78 
4;90 

37.76 
- -  1.42 

52.71 
-- 1.32 
-- 2.74 

1.41 

--3.22 

4.91 
8.71 

10.59 
- -  8.38 

0.72 
11.05 

0.46 
- -  18.34 

--4.16 
6.46 
0.97 

Defect ene[gy of Li~ig 
Defect energy of (Li~lg--Vo-Li~g) 
Total interaction energy of two Li~,ig and VO in the  {001} 
surface p lane  

16.40 
51.52 

--4.61 

*For all the impurity oxides referred to in this paper the lattice energy refers to the calculated  value [ 29]. 
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while the heat o f  solution based on the neutral 
trimer + + (NaMg-Vo-Narag)  is calculated to be 
1.58 eV, which is less than 0.2 eV above that for 
Li20. As shown in detail in Table III, then, defect 
energies associated with impurity substitution in 
MgO are very similar for Li + and Na § despite the 
difference in ion size. 

Turning now to interstitial defects, here we do 
find major differences which can be attributed to 
the size of  the impurity ion in relation to the 
elastic response of  the host lattice. The defect 
energy of  Na~- is approximately 5.6eV greater 
than that of  H~, so that even though the total 
binding energy of  the neutral {1 1 1} trimer, 
(Na~'-VMg-Na~) is more than 1 eV greater than 
that of  the corresponding Li § complex, the cal- 
culated heat of  solution per Na § ion, 3.59 eV, is 
appreciably higher than ~that previously found for 
Li:O. Furthermore, this is over 2 eV greater than 
the heat of solution for the anion vacancy trimer, 
( N a ~ g - V  o - N a ~ g )  and almost 0.7 eV more than 
that for free vacancy compensation. Unlike Li § 
therefore, our calculations do not  support the 
existence of  Na § interstitial defects in MgO. 

With regard to surface defects, the present 

calculations predict that, unlike H § both free 
Na~g and the neutral vacancy-trimer have lower 
energies at the surface than in the bulk and that 
for the latter defect in particular the energy dif- 
ference is nearly 2.8eV. For the isolated sub- 
stitution, Na{fg, short-range repulsive interactions 
clearly make a more decisive contribution to the 
elastic deformation energy than for Li + so that 
the surface is favoured by over 1 eV. Our cal- 
culations suggest, therefore, a marked surface 
enrichment by Na +, in the form of both isolated 
substitutions and neutral vacancy trimers. We 
conclude, therefore, that in the absence of  oxygen 
exchange, at least, the doping of  MgO by Na20 is 
much simpler than that by Li20. We predict that 
Na + is present solely as a substitution defect com- 
pensated by anion vacancies, either free or in associ- 
ation with the impurity depending on the tempera- 
ture and that at thermal equilibrium there should 
be an appreciable enrichment of  the surface by Na +. 

As is the case with Li + the majority of  experi. 
mental reports refer to oxidized MgO and in 
particular to the V~r a centre. We will present cal- 
culations for these defects in a separate report 
[42]. 

T A B L E I I I Doping of MgO by Na § Lattice energy of Na20 . . . . .  27.10 eV 

(eV) 

(a) Bulk defects 

(i) N a  § s u b s t i t u t i o n  

Defect energy of Na~ig 
Calculated heat of solution per Na + ion 

Free anion vacancy compensation 
Free cation interstitial compensation 

Defect energy of {100} (Na~ig-Vo) complex 
Interaction energy of free Na~g and V O 

Defect energy of {100} (Na~tg-Vo-Na~ig) complex 
Interaction energy of Na~jg and (Nal~ig--V O) 
Total interaction energy of two Na~vlg and V O 
Calculated heat of solution per Na + ion 

(ii) N a  § i n t e r s t i t i a l  

Defect energy of Na~ 
Calculated heat of solution per Na + ion 

Free cation vacancy compensation 
Free anion interstitial compensation 

Defect energy of {111} (Nai-VMg-Na I) 
Total interaction energy of two Na~ and Vlvlg 
Calculated heat of solution per Na + 

(b) {00 t} surface defects 

Defect energy of Na~vig 
Defect of energy of (Na~g-Vo-Na~ig) 
Total interaction energy of two Na~g and V O in the {00 I} 
surface plane 

18.64 

2.90 
5.02 

40.23 
- -  1.32 

57.56 
- -  1.31 
-- 2.63 

1.58 

2.41 

5.76 
12.09 
20.82 

- -  9.41 
3.59 

17.59 
54.79 

-- 4.44 
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3.3. Be 2+ 
The first of  the isovalent impurities we consider 
in this paper is Be 2§ While the parent oxide, 

namely BeO, is generally thought to be a some- 
what covalent material, we argue that the ionicity 
of  the host lattice should ensure that Be 2§ in MgO 
can be treated as a typical ionic impurity as far 
as the defect structure is concerned. The heat  of  
solution, on the other hand, does depend on the 
parent oxide and here we have calculated two 
theoretical values for the lattice energy of  BeO. 
The first, indexed as (a) in Table IV, is based on a 
straightforward application of  the electron-gas 
model to BeO: that is to say the wave function for 
Be 2+ is the free ion value while that for 02- is 

based on the Madelung potential  for an ionic BeO 
structure [29]. However, the calculated lattice 
energy, - 4 9 . 9 e V ,  is approximately 2 to 3 eV 
lower than the reported range o f - 4 6 . 5  t o - - 4 7 . 5  
eV [43], which leads to heats of  solution that  are 
unreasonably high. As an alternative procedure we 
have used the 02-  wavefunction for MgO to 
calculate the cohesive energy of  BeO and obtain a 
value o f - - 4 7 . 0 1 e V  which is in much better 
agreement with experiment.  Heats of  solution 
based on this second value for the lattice energy 
are indexed as (b) in Table IV. 

Turning now to the defect structure, the 
energies associated with Be 2+ substitution in the 
bulk have been considered previously [30]: here 
we extend the range of  calculations to include the 
interstitial impuri ty and substitution at the {0 0 1} 
surface. Despite its small size, the interstitial 

incorporat ion of  Be 2+ in MgO is predicted to be 
highly unfavourable compared with substitution. 
For the lat ter  mode the calculated heat of  solution, 

2.69 eV, is slightly lower than that for Li § and 
Na § (2.78 and 2.90 eV, respectively) in the absence 
of  impur i ty -de fec t  association which suggests that 
at high temperatures the solubility of  the three 
ions would be about the same. As ment ioned 
before [30], there is an appreciable interaction 
( - -1 .48 eV) between Be~a+g and cation vacancies, 
which should lead to a noticeable reduction in the 
diffusion coefficient and activation energy for 
migration of  Mg 2+ vacancies. The reason for this 

large interaction lies in the elastic deformation of  
the lattice surrounding the separate defects. In 
the case of  Be~+g there is a marked contraction of  
the lattice whereas cation vacancies give rise to a 
local expansion. In the {1 10} dimer configuration 
the two effects lead to an enhanced relaxation of  
the surrounding lattice and hence to a considerable 
binding between the two defects. 

Be~+g is predicted to be slightly more stable in 
the bulk than at the {0 0 1} surface and the reason 
for this is similar to that for the stability of  
impuri ty vacancy dimer. At a non-defective sur- 
face there is a slight dilation of the lattice by 
comparison with the bulk, so that  the elastic 
deformation energy required to equilibrate the 
ions surrounding Berg  is greater at the surface 
than in the bulk. However, the energy difference 
between the two, - 0 .23eV,  is small and is 
unlikely to induce a noticeable depletion of  the 
surface impuri ty concentration. 

TABLE IV Doping of MgO by Be 2§ Lattice energy of BeO = -- 49.4 eV (a)*; = -- 47.01 eV (b) 

(eV) 

(a) Bulk defects 

(i) Be  2+ subs t i tu t ion  

Defect energy of Belvlg2+ 
Calculated heat of solution per Be 2+ ion 

Defect energy of {110} (Be~g--VMg) 
Interaction energy of free Berg and VMg 

(ii) Be  2+ interst i t ial  

Defect energy of Be~ + 
Calculated heat of solution per Be 2+ 

Free cation vacancy compensation 
Free anion interstitial compensation 

(b) {001} surface defects 

Defect energy of Beivig2+ 

--3.57 
5.08 (a) 
2.69 (b) 

20.36 
- -  1 . 4 8  

-- 22.80 
1 1 . 2 6  ( a )  

8.87 (b) 
18.86 (a) 
16.47 (b) 

-- 3.80 

*Heats of solution marked (a) refer to a lattice energy of -- 49.90 eV; those marked (b) to one of -- 47.01 eV. 
Calculated lattice energies taken from Mackrodt and Stewart [30]. 
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TABLE V Doping of MgO by Ca 2+. Lattice energy of 
CaO = -- 36.0 eV 

(eV) 

(a) Bulk defects 

Defect energy of 2+ CaMg 5.82 
Calculated heat of solution per Ca ~+ ion 1.07 

Defect energy of {110} Ca~v~-VMg 31.04 
Interaction energy of free Ca~g and VMg -- 0.17 

Defect energy of {100} Ca~c~-VMg 31.61 
Interaction energy of free Ca~v~g and Vlvlg 0.40 

(b) {001} surface defect 

Defect energy of Ca~c~g 4.42 

3.4. Ca 2+ 
The bulk doping of  MgO by Ca 2+ has been dis- 
cussed on a previous occasion [30], so that we 
simply review the situation briefly, adding one 
or two details not given before. All the relevant 
defect energies are listed in Table V. Unlike the 
corresponding dimer involving Be 2§ Mg, the {1 10} 
Ca~g vacancy associate is only weakly bound 
(-- 0.17 eV) and unlikely to contribute appreciably 
to the defect properties of  MgO in the tem- 
perature range at which CaO has a significant 
solubility. Furthermore, the {100} dimer is found 
to be unstable with respect to the isolated point 
defects. However, our principal finding reported 
here is that the defect energy of  Ca~+g is con- 
siderably lower at the {001} surface of  MgO than 
in the volume of  the crystal. In addition, the 
magnitude of  this energy difference, 1.40eV, 
serves as a good illustration of the importance of  
lattice relaxation, particularly in surface cal- 
culations which are extremely sensitive to small 
displacements of  the outermost ions. The defect 
energy of  Ca~+g in the bulk is 5.82 eV so that in 
the absence of  any dilation on the non-defective 

surface the defect energy would be close to 
0.97 eV or less. The added stability of  nearly half 
an electron volt is due entirely to the increased 
lattice spacing at the surface which reduces the 
elastic strain energy still further. Our calculations 
suggest, therefore, that there should be a sub- 
stantial enrichment of  the surface of  MgO by 
Ca 2+ at thermal equilibrium. This is precisely the 
situation reported recently by Wynblatt and 
McCune [23] who find strong segregation at the 
{001} surface of  MgO crystals containing 220 ppm 
calcium. From these data they deduce a heat of  
segregation o f - - 0 . 7 8 - + 0 . 2  eV. In a separate 
report [44] we will extend the present calculations 
to include impurity segregation at the {001} and 
{1 10} surfaces, thereby enabling direct com- 
parison with the experimental data. 

3.5. Fe 2+ 
The doping of  MgO by transition metal ions, par- 
ticularly with regard to the stability and electronic 
properties of  the various charged states that can 
occur, has been the subject of  numerous investi- 
gations, most recently by Sangster and Stoneham 
[45, 46]. Lately, Gourdin and Kingery [12] have 
also reported energies for Fe 2§ and Fe 3+ defects 
in MgO. A major problem that arises in describing 
the defect structure of  these states concerns the 
interplay between lattice relaxation and electronic 
"crystal-field" effects and this will be examined 
in full in a separate report [42]. For the present 
we concentrate on those aspects of  the doping of  
Fe 2§ that rely almost exclusively on lattice energies. 

As shown in Table VI the defect energy for 
Fe 2§ substitution, 4.33 eV, is appreciably higher 
than that reported by Gourdin and Kingery [12] 
and leads to a heat of  solution of  0.79 eV. This is 
probably too low a value by virtue of  our theoreti- 

TABLE VI Doping of MgO by Fe 2+. Lattice energy of FeO = -- 37.21 eV 

(eV) 

(a) Bulk defects 

Defect energy of FeMg2+ 
Calculated heat of solution per Fe 2+ ion 

Defect energy of {1 10} (Fe~g-VMg) 
Interaction energy of free FeMg~+ and VMg 

(b) {001} surface defect 

Defect energy of Fe~tg 

4.33 (1.39)* 
0.79 

29.84 
0.10 

3.34 

*Figures in brackets are the corresponding energies reported by Gourdin and Kingery [ 12]. 
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cal lattice energy for FeO o f -  37.2 eV [42] which 
is somewhat higher than the range quoted by 
Waddington [47]. However, since all our cal- 
culations are based on a consistent set of potentials 
for MgO, FeO and FEZ+: MgO it is unlikely that our 
calculated heat of solution is in error by as much 
as the lattice energy for FeO. We find a small 
repulsive interaction between Fe~+g and a cation 
vacancy in the {110} configuration, while our 
results for Ca 2+ suggest that this is likely to be 
even greater for the {100} dimer. We predict, 
therefore, that there is unlikely to be any influence 
on the activation energy for cation vacancy 
migration. The calculated defect energy for Fe 2§ 
substitution at the surface is 3.34 eV which is 
approximately 1 eV less than in the bulk. How- 
ever, here, unlike the case for closed-shell impu- 
rities, we need to consider, in addition to the 
lattice energy, the crystal-field stabilization 
energy (CFSE), for this could have an important 
bearing on the overall difference between the bulk 
and surface-defect energies. A simple analysis 
leads to the following values for Fe 2+ (d 6) in MgO 

[481. 

Spin state/location CFSE 

High-spin bulk 4Dq 
High-spin {001} surface 4.57Dq 
Low-spin bulk 2 4 D q -  5//-- 8C 
Low-spin {001} surface 2 0 D q -  5B-- 8C 

in which Dq, B and C have their usual meaning 
[48]. For values of Dq of about 0.15 eV [49] 
the energy difference for the high-spin state is 
less than 0.1 eV, whereas in the low-spin state the 
bulk is favoured by about 0.6 eV. Since Fe 2+ 
(d 6) is thought to be low spin in FeO [49] we 
assume the same to be the case in MgO, so that 
the overall energy difference between the bulk and 
surface is now approximately 0.4 eV. We predict, 
therefore, that at thermal equilibrium, the con- 
centration of Fe 2§ in MgO will be more or less 
uniform throughout the crystal, but possibly with 
a slight preference for the bulk. 

Black and Kingery [22] have recently reported 
observations of segregation from iron-containing 
samples of MgO. In a reducing atmosphere in 
which the iron is present at Fe 2+ they found no 
concentration changes at the surface: thus we find 
good accord with experiment. , 

3.6.  AI 3+ 

We now consider the first of the trivalent impurities, 
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namely, AI 3+, for which there have been two sets 
of calculations reported recently for bulk defects 
[12, 30]. The first, and more extensive of the two, 
by Gourdin and Kingery [12], uses a combination 
of empirical and non-empirical potentials for MgO 
[50] and a-A1203 [51]; the second [30] is based 
on potentials that are identical to those used here. 
For completeness we present the full range of 
calculations for the bulk in addition to those for 
the surface and compare the results for the two 
sets of potentials. 

In the absence of defect association, A13+ as 
an impurity substitution can be compensated 
by either cation vacancies or anion interstitials. 
However, as Table VII shows the former is by 
far the more favourable of the two modes, with a 
calculated heat of solution of 2.24 eV. The value 
obtained by Gourdin and Kingery [12], 4.1 + 1.5 
eV, is somewhat higher, due principally to a 
defect energy for 3+ A1Mg that is over 5 eV greater 
than that found here. There is an appreciable 
binding of 3+ A1Mg to cation vacancies to %rm both 
dimers and neutral trimers, but in both cases the 
{100} defect is the more stable of the two, as 
found previously [12]. Once again the explanation 
is similar to that given for the stability of the Berg 
vacancy dimer. At equilibrium the six nearest- 
neighbour anions surrounding an isolated AI~+g 
are displaced towards the defect, whereas they 
are displaced away from a cation vacancy. In the 
{100} dimer, therefore, these displacements are 
exactly in phase, as illustrated in Fig. 5, thereby 
allowing the central anion the maximum degree 
of relaxation.In the {100} dimer, on the other 
hand, the two central anions are acted on by 
forces that are perpendicular to each other 

T r 
) AI 3+ s 

1 

I 
L r 

( 1 1 0  DIMER } 

> AI 3§ .- 

T 
foo, o,..a} 

Figure 5 Lattice relaxation at AP+-VMg dimers. 



TABLE VII Doping of MgO by AP*. Lattice energy of ~-A1203 = -- 161.9 eV 

(eV) 

(a) Bulk defects 

(i) AI 3§ substitution 
Defect energy of Al~g 

Calculated heat of solution per AP § ion 
Free cation vacancy compensation 
Free anion interstitial compensation 

Defect energy of {100} (AI~g-VMg) complex 
Interaction energy of A I ~  and VMg 

Defect energy of {1113} (AI~g-VMg) complex 
Interaction energy of free At~v~g and VIvlg 
Defect energy of {10t3} (Al~v~g-VMg-Al~g) 

Interaction energy of Alfv~g and (Al~g-Vrdg) 
Interaction energy of two free Al~g and VMg 
Calculated heat of solution per AP § ion 

Defect energy of {1 10} (Al~g-VMg-Al~v~g) 
Interaction energy of AlOng and (AI~g-VMg) 
Interaction energy of two free Al~.~g and VIvIg 
Calculated heat of solution per A I ~  ion 

Defect energy of {111} (Al~g-O~-) complex 
Interaction energy of free Al~g and O~- 

(ii) A P  § interstitial 
Defect energy of AI~ § ion 

Calculated heat of solution per A13~ ion 
Free cation vacancy compensation 
Free anion interstitial compensation 

(b) {001} surface defects 

Defect energy of At~g 
Defect energy of {110} (Al~g-Vlvlg) 

Interaction energy with respect to the A t ~  and VMg in the surface 
Defect energy of {110} (AI~jg-VMg-A1 ~ )  

Interaction energy with respect to {110} (AI~g-VMg) and Vlvlg in the surface 
Interaction energy with respect to two free Al~g and VMg in the {001} surface 

-- 30.29 (-- 24.98)* 

2.24 (4.1 -+ 1.5) 
6.04 

-- 5.76 
--  O.88 (-- 0.86) 
- -  5.41 
-- 0.54 (-- 0.68) 

36.95 
-- 0.90 
- -  1,79 (-- 1.68) 

1.35 
--36.12 

-- 0.42 
-- 0,95 (-- t.32) 

1.77 
-- 38.49 

-- 0.46 

--43.00(--33.84) 

14.94 
26.34 

--  29.77 
--5.08 
- -  1.22 

-- 35.29 
-- 0.44 
- -  1.66 

*The figoares in brackets are the corresponding energies reported by Gourdin and Kingery [ 12]. 

thereby limiting the extent  o f  lat t ice stabilization. 
This is essentially the argument given by Gourdin 
and Kingery [12] in their discussion of  A1 a+ 
vacancy complexes;  however, as shown later,  
this argument leads to the reverse order for the 
stabil i ty o f  impur i ty -vacancy  /timers involving 
Sc 3+ and Fe 3+. The {100} associate is bound by 
approximately 0.2 eV more than the {1 10} com- 
plex, while the difference for the corresponding 
tr imer is found to be almost 0.9 eV. For  the {100} 
defects the present calculations predict  interact ion 
energies that  are slightly greater than those given 
by Gourdin and Kingery [12], whereas it is the 
reverse for the {1 10} associates. However, in each 
case the agreement between the two sets of  
calculations is remarkably close, despite the fact 
that  the energies for the ind iv idual  defects differ 
quite substantially. 

We have also considered the association of  Al~*g 
and an 02-  interstitial as a possible means of  
stabilizing anion Frenkel defects in MgO, but  find 
that  the interaction energy is less than 0.5 eV. 
With regard to  A13* interstitials, our calculations 
suggest a similar si tuation to that  predicted for 
Be 2+. That is to say, despite the small size of  the 
A13+ ion, impuri ty interstitials compensated by 
either cation vacancies or anion interstitials 
remain highly unfavourable from an energetic 
point  of  view, with heat  of  solution o f  14.94 and 
26.34eV per AI 3+ ion in the absence of  defect 
association. Once again this view accords with that 
previously found [12]. The defect energies o f  

3+ A1Mg and the {100} dimer and tr imer are all 
predic ted to be lower in the bulk than at the 
{00 1} surface, with differences ranging from 
approximate ly  half  an electron volt for the isolated 
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substitution to 1.66 eV in the case of  the neutral 
trimer. For the two charged defects the Madelung 
potential  in combinat ion with the long-range 
polarization and local contract ion of  the lattice 
favour the bulk and these evidently compensate 
for the / 'educt ion  in the repulsive potential  at the 
surface. The relative stability of  the neutral trimer, 
on the other hand, is determined solely by the local 
contract ion of  the latt ice which is clearly not  
favoured at the relaxed surface. We conclude 
from these calculations, then, that for MgO 
doped with Am 3+, there will be a depletion of  the 
impuri ty  concentration at the surface relative 

to the bulk. 
We cannot compare our present calculations 

directly with experiment,  for AI 3+ segregation 

at the surface is accompanied by spinel formation 
[25, 26] which we cannot treat as yet.  However, 
we note that  for the bulk our calculated value for 
the energy of  formation of  spinel from MgO and 
A120 a i s - -  0.95 eV. 

3 .7 .  SC 3+ 

The second of  the trivalent impurities we consider 
in this paper is Sc 3§ for which the appropriate 

bulk and surface defect energies are listed in Table 
VIII.  Unlike the situation for the other impurities 
our computat ional  procedures have not  been able 
to cope with the very large unit cell of  the parent 
oxide, Sc203, so that we are unable to estimate 
heats of  solution. Our analysis, therefore, is 
confined solely to defect energies. 

By comparison with A13+ these are approxi- 
mately 8 eV higher per impuri ty ion due to the 
increased short range repulsion of  Sc 3+. The bind- 
ing energies of  the various dimers and trimers, 
on the other hand, we find to be of  the same order 
of  magnitude. Now apart from the differences in 
the absolute energies just referred to, the relative 
energies of the {100} and {1 10} associates are also 
quite different from the corresponding AI 3+ com- 
plexes, for here the {1 10} defects are predicted 
to be the more stable of  the two. Much the same 
sort of  reasoning applies here as for A13+. However, 

TABLE VIII  Doping of MgO by Sc 3+ 

(eV) 

(a) Bulk defects 

Defect energy of SCMg3+ 
Defect energy of {100} (Sc~vlg-VMg) 

Interaction energy of Sc~g and VMg 
Defect energy of {t 10} (Sc~g-VMg) 

Interaction energy of Sc~v~g and VMg 
Defect energy of {100} (Sc~Ig-VMg-Sc~g) 

Interaction energy of Sc~g and (Sc~g-VM_g) 
Interaction energy: of two Sc~g and VMg 

Defect energy of {1 10} 3+ 3+ (SCMg-VMg-SeMg)  
Interaction energy of Scrag and (Sc~g-VMg) 
Interaction energy of two free Sc~g and VMg 

Defect energies of {1 1 1} (ScI~g-Oi) 
Interaction energy of Sc~_g and 0~- 

(b) {001} surface defects 

Defect energy of Sc~g 
Defect energy of {110} (Sc~-Vlvlg) in the surface 

�9 t Interaction energy of Scrag and VMg in the surface 
Interaction energy of {110} (Sc~g-VMg) in the surface with respect to Scfv~g and VMg in the bulk 
Defect energy of {110} (Sc~g-VMg) perpendicular to {001} surface--VMg in surface plane 
Defect energy of {11 O} 3+ 3+ (SCMg-VMg-SCMg) 
Interaction energy of two Sc~g and VMg in the surface 
Interaction energy of {1 10} (Sc~g--VMg) and S c ~  in the surface plane 
Interaction energy of {1 10} (Sc~:VMg-Sc ~ )  in the surface with respect to {1 10} 

3+ (SCMg--VMg) in the surface and Scrag in the bulk 
Interaction energy of {1 10} (ScMg-VMg-SCMg)3+ 3+ m" the surface with respect to 

s+ and VMg in bulk 2 SCMg 

-- 22.29 
2.51 

- -  0.61 
2.33 

-- 0.79* 
-- 20.35 

-- 0.57 
--1.18 

-- 20.71 
- -  0.75 
- -  1.54 

--31.57 
- -  1.54 

-- 21.78 
1.66 

-- 2.47 
- -  1.46 

1.76 
-- 21.59 

-- 3.94 
- -  1.47 

-- 0.96 

-- 2.42 

*Experimental value 0.73 eV [4]. 
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Figure 6 Lattice relaxation a t  Sc3+--VMg dimers. 

the difference is that in this case the nearest neigh- 
bour anions surrounding both the cation vacancy 
and Sc~x+g are displaced outwards, so that in the 
{100} dimer, the central ion is under the influence 
of opposing repulsive forces thereby limiting the 
extent to which the strain energy of the complex 
can be lowered by lattice relaxation. As shown in 
Fig. 6, this is not the case for the {11 0} dimer; 
however, the energy differences between the 
configurations are quite small being approximately 
0.2 eV for the dimer and 0.4 eV for the correspond- 
ing trimers. With regard to experiment, we note 
with interest that our calculated binding energy 
of the {110} dimers, 0.79eV, is in very good 
agreement with the value of 0.73eV recently 
reported by Sempolinski and Kingery [4]. 

A further example of the differences between 
Sc 3+ and A13+ substitution is the interaction 
energy with an 02- interstitial. For Sc~+g it is 
calculated to be --1.54 eV which is appreciably 
greater than that found for 3+ A1Mg (-- 0.46 eV) 
and, once again, lattice relaxation effects are 
responsible for this difference. There is a local 
outward displacement of the ions surrounding 
an 0 2- interstitital which is enhanced by the 
presence of a neighbouring Sc 3+ ion, but diminished 

by A13+. Unlike the vacancy dimers and trimers, 
however, all the surrounding ions are subject to 
these combined forces so that the overall difference 
in energy between the two cases is quite appreci- 
able. 

Turning now to surface defects and in particular 
to tile differences between the bulk and the  sur- 
face, we find a more complex situation here than 
for any previous impurity as shown in Table VIII. 

3+ The isolated substitution, SCMg , is found to be 
more stable in the bulk by virtue of the Madelung 
potential which is always greater in the bulk than 
at the surface. The {1 10} vacancy dimer and 
trimer, on the other hand, are calculated to have 
lower energies at the surface, in contrast to the 
corresponding A13+ associates. In the case of the 
dimer this is true for configurations in which the 
dimer is both in the surface plane and perpendicu- 
lar to it. If  we now consider the binding energies 
of these associates, that is to say the energy 
differences between the associates and the separated 
vacancy and Sc 3+ substitutions, the values we get 
clearly depend on the location of the separated 
defects. For example, the binding energy of the 
{1 10} dimer in the surface plane with respect 
to the vacancy and Sc~+g also in the surface plane 
is - -2 .47 eV; however, this is reduced by over 
1 eV for separated defects in the bulk. For the 
{1 10} trimer in the surface plane the correspond- 
ing difference is even greater at over 1.5 eV. Thus 
we have two sets of dissociation energies for the 
dimer and trimer. The first, which might be 
referred to as the "non-equilibrium" values, 
corresponds to the separated defects in the sur- 
face, whereas the second, which we designate as 
the "equilibrium" values, refer to the isolated 
defects in the bulk. Then for the two processes, 
we have the situation as shown in Table IX. 

Now the important point here is that the 
difference in the dissociation energies for the 
two processes is large, irrespective as to whether 
we choose the "equilibrium" or "non-equilibrium" 

TABLE IX 

AE (eV) 

"Non-equilibrium" "Equilibrium" 

3+ 3+ 3+ S c~v~g (SCMg-VMg-SCMg) --+ (SCMg-VMg) + 

and 
3+ 3+ 

(SCMg-VMg) --~ SCMg + VMg 

Energy difference for the two processes 

1.47 0.96 

2.47 1.46 

1.0 0.5 
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values; and certainly much larger than the corres- 
ponding difference in the bulk which is only 

0.04 eV. We predict,  therefore, that  at the surface, 
the first of  the two processes, namely the dis- 
sociation of  the trimer, dominates and that  this 
will lead to the formation of  a negative space 

~-Sc3+ - charge region at the surface, since t Mg--VMg) is 
more stable at the surface, whereas Sc~+g has a 
lower energy in the bulk. 

Black and Kingery [22] have recently found 
excess Sc 3+ at the {0 0 1} surface of  MgO so that  
here we find good agreement with experiment 
for both the bulk and surface defects. 

3.8. Fe 3+ 
The final trivalent impurity we consider in this 
report  is Fe 3+, for which the calculated defect 
energies are given in Table X. We assume Fe~+g 
to be in a high-spin d s state so that all our results 

here, like those for Fe 2§ are independent of  
crystal-field effects. On the whole the situation 
is very similar to that  for S J  § particularly so in 
the bulk, with differences of  little more than 
0 .2eV for any of  the individual defects. The 
present results, however, differ quite markedly 
from those reported by Gourdln and Kingery 
[12] in a number of  respects. The energy of  
Fe 3+ substitution is over 7 eV greater than that 
previously found and this is largely responsible 
for the difference in the two heats of  solution 
for free cation vacancy compensation. Here we 
find a value of  3 .54eV as opposed to  one of  
- 2 . 9  +-3eV given earlier [12]. There is good 
agreement for the binding energies o f  the {1 10} 
dimer and, trimer, but  the two sets of  calculations 
are at variance both with regard to the relative 
stability of  the {1 10} and {100} associates and the 
binding energies of  the latter. Here we predict the 

T A B L E  X Doping of MgO by Fe 3§ Lattice energy of a-Fe20 3 = -- 148.7 eV 

(eV) 

(a) Bulk defects 

Defect energy of FeMg3+ 
Calculated heat of solution per Fe 3§ ion 
Free cation vacancy compensation 
Free anion interstitial compensation 

Defect energy of {100} (Fe~_g-VMg) 
Interaction energy of Fe~g and VMg 

Defect energy of {110} (Fe~_g-Vlvlg) 
Interaction energy of Fe~g and VlVlg 

Defect energy of {100} t~Fe3+Mg-*lVlg~r --l~eMg j3+ 
Interaction energy of FeMg3+ and (FeMg_VMg)3+ 
Interaction energy of two Fe b and VMg 
Calculated heat of solution per Fe 3+ ion 

Defect energy of {110} 3§ 3+ (FeMg-Vlvlg-FeMg) 
Interaction energy 3+ of Felvlg and 3§ (FeMg-VMg) 
Interaction energy of two Fe~g and VMg 
Calculated heat of formation per Fe 3§ ion 

Defect energy of {111} (Fel~g-O~-) 
Interaction energy of Fe~g and 03- 

(b) {1301} surface defects 

Defect energy of FeMg3+ 
Defect energy of {110} (Feivlg3+ _VMg ) in the surface 
Interaction energy of Fe~g and VMg in the surface 
Interaction energy of {110} (Fe~g-VMg) in the surface with respect to Fe~v~g and VMg 

in the bulk 
Defect energy of{110} 3§ 3+ (FeMg-VMg-FeMg) 
Interaction energy of {110} (FeMg--VMg)3+ in the surface 
Interaction energy of {1 10} (FeMg3+ _VMg_FeMg )3+ in the surface with respect to {1 10} 

(Fe~g-VMg) in the surface and 3§ FeMg in the bulk 
Interaction energy of {110} (FeMg--V1vlg--FeMg)3§ s+ in the surface with respect to 

2 Fe~g and VMg in the bulk 

-- 22.39 (-- 29.67)* 

3.54 (-- 2.9 -+ 3) 
7.34 
2.42 

-- 0.60 (-- 1.13) 
2.23 

-- 0.79 (-- 0.88) 
-- 20.53 

--0.56 
-- 1.16 (-- 2.20) 

2.96 
-- 20.91 

-- 0.75 
- -  1.54 (-- 1.42) 

2.77 
-- 31.68 

- -  1.54 

-- 22.25 
1.56 

--2.10 

- -  1.46 
--3.19 
- -  1.09 

-- 0.95 

- -  2.41 

*Figures in brackets are the corresponding energies reported by Gourdin and Kingery [ 12]. 
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{1 10} defects to be the more stable of the two 
by about 0.2eV per Fe 3+ Mg--VMg interaction, for 
reasons similar to "those given for Sc3+; whereas 
the previous calculations suggest the reverse 
order of stability with an energy difference of 
about 0.4eV. Allowing for impurity-vacancy 
interaction, then, the present calculations predict 
a heat of solution in the range 2.77 to 3.54eV, 
depending on the degree of association, in contrast 
to those of [12] which lead to one of between 

- 2.9 + 3 and - 4.0 + 3.0 eV. We have also con- 
sidered the interaction between Fe~+g and an 
02. interstitial and although the two are bound 
by over 1.5 eV this is insufficient to render this 
mode of compensation favourable, for the heat 
of solution is still well over 5 eV. 

While it is not our intention here to consider 
the stability of the various charged states in detail, 
from the defect energies of Feh+g and Fe~+g we 
can calculate the enthalpy, ~E, for the thermal 

process, 
2+ 3+ FeMg ~ FeMg + e c 

in which the excitation is to the conduction band, 
and from this estimate the position of the Fe2+/ 
Fe 3+ level in the band-gap. Using values o f - -  0.7 
eV for the conduction-band edge given pre- 
viously [30] and the free-ion ionization potential 
of 30.65 eV [52], we find AE to be 3.23 eV. This 
locates the impurity level at roughly the middle 
of the thermal band-gap which has previously 
been estimated to be 6.0eV [30] based on cal- 
culations similar to those reported here. 

Sempolinski et  al. [ 1 ] have recently reported 
experimental values of  3.32 + 0.52 and 6.8 -+ 0.5 
eV for the excitation energy and thermal band 
gap, respectively, which further confirms the 
general validity of the present calculations. 

The surface defect structure associated with 
Fe 3+ is yet another example of the diversity of 
effects that result from cation doping. The relative 
bulk/surface stability of the vacancy associates is 
similar to that for Sc 3+ in that both the dimer and 
trimer are lower in energy at the surface. Once 
again we find quite appreciable binding energies 
for these associates. For example, the {1 10} trimer 
is bound by 0.95 eV with respect to the surface 
dimer which in turn is bound by 1.46 eV with 
respect to the isolated defects in the bulk. How- 
ever, the difference in energy for the isolated 
defect Fe 3+ Mg, between the surface and the bulk 
(0.14eV) is very much smaller than that for 
Sc 3+ (0.51 eV) so that here we predict surface 

enrichment by Fe 3+ at thermal equilibrium, but 
without an enhancement of a negative space- 
charge layer found for Sc a+. Thus we predict 
appreciable differences between the solubility 
of FeO and a-F%O 3 in MgO and also in the 
surface to bulk enrichment for Fe~+g and Fe 3+ Mg" 

Once again our predicted enrichment of the 
{00 1} surface is in agreement with the experi- 
mental data of Black and Kingery [22]. 

3.9. Ti 4+ 
The first of the quadrivalent impurities we consider 
in this paper is Ti 4§ for which similar calculations 
involving the doping of a-Al2Oa have recently 
been reported [53,54]. The present r~sults are 
collected in Table XI. For Ti 4§ substitution, 
vacancy compensation is predicted to be the more 
favoured of the two possible modes by far, although 
the heat of solution is high at over 7 eV. The 
inclusion of vacancy-impurity dimers reduces this 
to 5.70 eV per Ti 4§ ion, but nonetheless our cal- 
culations suggest that at all but the highest tem- 
peratures the solubility of TiO2 in MgO will be 
small. We note that the corresponding solubility 
i n  a-A1203 is predicted to be much greater, 
with heats of solution varying from 1.79 to 
3.53 eV depending on the degree of aggregation 
[54]. Ti 4+ interstitials, although highly stable as 
isolated defects, require over 10eV for solution 
from T i Q ,  even allowing for impurity clustering, 
so that here too we expect the concentration 
to be extremely low. In line with other highly 

"4+ charged defects, T1Mg is more stable in the bulk 
than at the surface, in this case by nearly 2 eV, 
but, as before, the dimer is predicted to have a 
lower energy at the surface. However, unlike 

3+ (ScMg-VMg), this applies only to the Ti 4+ dimer 
in a configuration in which it is perpendicular to 
the surface plane. The calculated energy difference 
between this state and the bulk seems to be rather 
large and this we suspect might be due to the low 
symmetry of the defect at the surface and hence 
to the reduced number of ions in the inner region. 
We find the surface dimer to be tightly bound by 
about 5 eV with respect to the equilibrium location 

"4+ of T1Mg and the cation vacancy, so that our cal- 
culations predict a marked surface enrichment by 
this impurity in the form of neutral defects without 
any tendency to form a space-charge layer. 

3.10. Si 4+ 
The final impurity we consider in the paper is 
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T A B L E X I Doping of MgO by Ti *+. Lattice energy of TiO 2 = -- 122.40 eV 

(eV) 

(a) Bulk defects 

O) Ti 4+ substitution 
Defect energy of Ti~g 

Calculated heat of solution per Ti~g 
Free cation vacancy compensation 
Free anion interstitial compensation 

Defect energy of {100} (Ti~tg-Vlvlg) 
Interaction energy of Ti~/~g and Vlvtg 
Calculated heat of solution per Ti 4§ ion 

(ii) Ti 4§ interstitial 
Defect energy of Ti~ § 

Calculated heat of solution per Ti 4§ ion 
Free cation vacancy compensation 
Free anion interstitial compensation 

Defect energy of (Vlvlg-Ti~+-VMg) 
Interaction energy of 2 VMg and Ti~ + 
Calculated heat of solution per Ti 4+ ion 

(b) {001} surface defects 

D:ff~st t :n:rrgg ~ off ~i~0} (Ti - V  
Mg) m surface (a) 

Defect energy of {11 t3} (TiJv~g-Vlvlg) perpendicular to surface plane with Ti~g in the surface (b) 
Interaction energy of Ti~g and Vlvlg in the surface (a) 
Interaction energy of Ti~v~g and VMg in the surface (b) 
Interaction energy of {110} (Ti~g-VMg) in the surface (a) with respect to Ti~ag and Vlvig in the bulk 
Interaction energy of {110} (Ti~tg-VMg) in the surface (b) with respect to Ti~g and VMg in the bulk 

-- 59.25 

7.06 
14.66 

-- 35.20 
- -  1 . 3 6  

5.70 

--65.36 

26.36 
41.57 

-- 30.42 
- -  15.88 

10.48 

-- 57.28 
-- 35.00 
--38.78 

-- 3.43 
--7.21 
--1.16 
- -  4.94 

Si a+, for which the appropriate defect energies 
are given in Table XII. As was the case for Be 2+, 
it is important to emphasize that while it is clear 
that SiO2 is a completely covalent material, Si 4+ 
as an impurity in MgO might, to a first approxi- 
mation, be treated as an ionic impurity; and that 

T A B L E X I I Doping of MgO by Si 4+ 

(eV) 

(a) Bulk defects 

(i) Si 4§ substitution 
Defect energy of Si~g -- 68.91 
Defect energy of {110} (Si~r -- 44.61 

Interaction energy of Si~xg and VMg -- 1.11 
Defect energy of {100} (Si~r -- 44.98 

Interaction energy of Sing and VMg -- 1.48 
Defect energy of {111} (S1Mg-O I ' 4 +  2-) -- 78.18 

Interaction of Sing and O~- --  1.53 
(ii) Si 4+ interstitial 
Defect energy of Si~ + --  77.38 
Defect energy of (VMg-Si~+-VMg) -- 39.06 

Interaction energy of Si~ + and two Vlvlg --  12.50 

(b) {001} surface defects 

Defect energy of S i ~ r  

Defect energy of {1 10} (SP+-Vlvlg) 
--  67.43 
--45.05 

3 0 3 6  

provided the calculations are interpreted with 
caution they might be of interest both in relation 
to the other impurities discussed here and also to 
experiment. Broadly speaking the results parallel 
those for Ti 4+, with cation vacancy compensation 
being the preferred mode for Si 4+ substitution. 
The {100} dimer is predicted to be more stable 
than the {110} for reasons similar to those given 
for A13+, with a binding energy of nearly 1.5 eV. 
Si 4+ as an interstitial defect is highly stable and 
very strongly bound to cation vacancies. However, 
as in the case of Ti 4+, the total energy is still 
greater than that for the corresponding sub- 
stitutional defect by about 5 eV. Isolated S1Mg'4+ 
is calculated to be more stable in bulk than at the 
surface, but as before the dimer, which is tightly 
bound by about 3.5 eV, has a lower energy at the 
{00 1} surface. Bearing in mind our previous 
remarks, then, our calculations suggest a surface 
enrichment of MgO by Si 4+ as the neutral {1 10} 
vacancy dimer. 

3.1 1. Impurity--impurity interactions in 
MgO 

Here we consider rather briefly the interaction 



between Li § and Na § on the one hand, and the 
highly charged cations A13+, Sc 3*, Fe a+ and Si 4+. 

The calculated defect energies are listed in Table 
XIII. As indicated the binding energies are small 

and certainly less than the corresponding vacancy 

interactions. For crystals doped with impurities 

of this type, therefore, our calculations suggest 
little interaction between them, particularly so 
at high temperature. 

4. Summary of defect calculations 
To summarize our defect calculations, then, we 
find a diversity of effects both in the bulk and 

surface of MgO doped by the various cation 
impurities considered. We find differences that 

are due solely to size effects, such as those between 
Li* and Na § and A13+ and Sc a* and others that 

result from the charge state of the impurity, such 
as Fe 2+ and Fe 3+. From our calculated heats of 

solution we predict the relative order of solubility 

in MgO at high temperatures to be 

FeO > CaO > a-A1203 > BeO > Li20 > Na20 

> a-F%O3 > TiO2. 

However, our calculations suggest that this will be 
markedly different at temperatures which permit 
defect association. We predict a range of binding 
energies for the various dimers and trimers that 

can be formed from 0.17 eV for the {110} vacancy 
dimer, (Ca~g--VMg), to 15.88eV for the inter- 
action energy of Tix 4+ and two cation vacancies. In 
the case of Li + in the absence of oxygen exchange, 
we predict an interstitial impurity of the type 

proposed for Li+:MgF2 and suggest that similar 
dielectric relaxation effects should result. Our 
calculations also suggest that at thermal equilibrium 

T A B L E X I I I Impurity-impurity interactions in MgO 

(eX9 

Defect energy of (Li~g-Al~g) -- 14.29 
Interaction energy of Ling and Al~g -- 0.27 

Defect energy of (Li~ig-Sc~g) -- 6.52 
Interaction energy of L1Mg'+ and SCMg3+ - -  0.41 

Defect energy of (Li~g-Fe~g) -- 6.43 
Interaction energy of LIMg'+ and FeMg3+ -- 0.41 

Defect energy of (Na~g-Al~g) -- 11.90 
Interaction energy of Na~lg and Al~g -- 0.25 

Defect energy + 3+ of (NaMg-SCMg) -- 4.00 
Interaction energy of Na~a_g and Sc~g -- 0.35 

Defect energy + 3+ of (NaMg-FeMg) -- 4.10 
Interaction energy of Na~g and Fe~g -- 0.35 

Defect + .4+ + energy of NaMg-SIMg-NaMg -- 32.44 
Interaction energy of two Na~lg and Si~v~g -- 0.81 

there should be a surface enrichment of MgO by 
Na*, Ca 2+, Sc~*, Ti 4§ and Si 4+ and that in the case 

of Sc 3§ this should be accompanied by the forma- 

tion of a space-charge region. We find little inter- 

action between monovalent and trivalent impu- 

rities, which suggests that the defect structure 
associated with each type can be treated separately. 

Finally, we note with interest the good agreement 
between our calculated defect energies and the 
available experimental data. This lends support to 
the overall validity of a computational approach 

to defect structures in ionic materials. 
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